
November
2018

Agenda
Welcome to the Seattle ColdFusion User Group
 Introductions
Goals
How to protect your applications from SQL Injection Attacks
How to protect your applications from XSS Attacks
How to protect your web application from click-jacking
CF Alive
Next Steps for the Seattle ColdFusion User Group
December 2018 Meeting
Questions/Answers/Help Needed

Introductions

 Tell us a little bit about who you are
 Share with us what you would like to get from this user

group

Goals

Assist ColdFusion Developers Throughout the
Pacific Northwest
 Promote ColdFusion Developers Throughout the

Pacific Northwest
Connect Employers with ColdFusion Developers
 Establish a Community of Friendship Between ColdFusion

Developers
 Provide Speaking Opportunities for ColdFusion Developers
Change the Perception of ColdFusion as a viable platform

How to protect your web
application from SQL Injection
Attacks

What is a SQL Injection (SQLi) Attack?
 SQL injection is a code injection technique, used to attack data-

driven applications, in which nefarious SQL statements are
inserted into an entry field for execution (e.g. to dump the
database contents to the attacker).

 SQL injection must exploit a security vulnerability in an
application's software, for example, when user input is either
incorrectly filtered for string literal escape characters embedded
in SQL statements or user input is not strongly typed and
unexpectedly executed.

https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Attack_(computing)
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Security_vulnerability
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Escape_sequence
https://en.wikipedia.org/wiki/Strongly-typed_programming_language

How to protect your web
application from SQL Injection
Attacks

How can I protect my application from this type of attack?

Utilize the Principle of Least Privilege

Use the appropriate data type for each field in you database

 Validate all user provided data PRIOR to it touching the
database

USE CFQueryParam and CFProcParam tags with all of your
queries/stored procedures

How to protect your web
application from SQL Injection
Attacks

Principle of Least Priviledge

Each query or stored procedure call should utilize the lowest
permission level possible required to execute that query or
stored procedure

How to protect your web
application from SQL Injection
Attacks

Use the appropriate datatype for each database field

Avoid using varchar/text other field that accept free-form
characters when data would not be free-form
 Dates/Times

 Numbers

How to protect your web
application from SQL Injection
Attacks

Validate all user provided data PRIOR to it touching the dB

 Validate all user provided data client-side that it conforms to
what is expected

Use the following functions to validate data server side:
IsNumeric, IsDate, IsValid

How to protect your web
application from SQL Injection
Attacks

Use CFQueryParam and CFProcParam tags with each
query/stored procedure parameter

 Validate all user provided data client-side that it conforms to
what is expected

Use the following functions to validate data server side:
IsNumeric, IsDate, IsValid

How to protect your web
application from SQL Injection
Attacks

CFQueryParam/CFQueryParam SQL Types

CF_SQL_VARCHAR, CF_SQL_INTEGER, CF_SQL_DATE,
CF_SQL_SMALLINT, CF_SQL_NUMERIC, CF_SQL_TINYINT

many more listed at https://cfdocs.org/cfqueryparam

 If using CF_SQL_NUMERIC don’t forget to identify the scale
(number of numbers to the right of the decimal point)

No longer need to include CF_SQL_ for CF11+/Lucee 4.5+

https://cfdocs.org/cfqueryparam

How to protect your web
application from SQL Injection
Attacks

Additional Tips to prevent SQL Injection from free-form
text

 Set the maxlength attribute in the
CFQueryParam/CFProcParam tag

Use the isSafeHTML function (OWASP AntiSamy) to check
input provided from a rich text editor/textarea field

How to protect your web
application from SQL Injection
Attacks

Resources

CFQUERYPARAM - https://cfdocs.org/cfqueryparam

CFPROCPARAM - https://cfdocs.org/cfprocparam

 isSafeHTML - https://cfdocs.org/issafehtml

 isValid - https://cfdocs.org/isValid

 isNumeric - https://cfdocs.org/isNumeric

 isDate - https://cfdocs.org/isDate

https://cfdocs.org/cfqueryparam
https://cfdocs.org/cfprocparam
https://cfdocs.org/issafehtml
https://cfdocs.org/isValid
https://cfdocs.org/isNumeric
https://cfdocs.org/isDate

How to protect your web
application from XSS Attacks

What is XSS (Cross-Site Scripting)?

Cross-site scripting (XSS) is a type of computer security
vulnerability typically found in web applications. XSS enables
attackers to inject client-side scripts into web pages viewed by
other users. A cross-site scripting vulnerability may be used
by attackers to bypass access controls such as the same-origin
policy.

How to protect your web
application from XSS Attacks

What is XSS (Cross-Site Scripting) - continued?

#1 Vulnerability in Web Applications

Types of Cross-Site Scripting (XSS)

 Refected

 Persistant

DOM

How to protect your web
application from XSS Attacks

Reflected Cross-Site Scripting (XSS)

<cfoutput>

Hello #url.name#

</cfoutput>

index.cfm?name=<script>alert(‘gotcha’)</script>

How to protect your web
application from XSS Attacks

Reflected Cross-Site Scripting (XSS) – how to defense

1. Ensure debugging is turned off

2. Use the scriptprotect attribute the CFApplication tag or
this.scriptprotct in an Application.cfc file (an okay 1st line of
defense, but not a catch-all)

How to protect your web
application from XSS Attacks

Reflected Cross-Site Scripting (XSS) – how to defense
3. Use the ESAPI functions around all output variables (unless

the output variable is from a texarea field – then consider
using the getSafeHTML function)
EncodeForHTML, EncodeForHTMLAttribute,
EncodeForJavaScript, EncodeForURL,EncodeForXML

4. Use Foundeo’s CFML Security Utilities -
https://github.com/foundeo/cfml-
security/tree/master/securityutil

https://github.com/foundeo/cfml-security/tree/master/securityutil

How to protect your web
application from XSS Attacks

Reflected Cross-Site Scripting (XSS) – how to defense

5. Use the X-XSS-Protection response header
not supported by Firefox

<cfheader name=“X-XSS-Protection” value=“1;
mode=block”>
or
X-XSS-Protection: 1; mode=block as a custom header in
web.config

How to protect your web
application from XSS Attacks

Reflected Cross-Site Scripting (XSS) – how to defense

5. Use the X-XSS-Protection response header
not supported by Firefox

more info: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/X-XSS-Protection

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

How to protect your web
application from XSS Attacks

Persistant Cross-Site Scripting (XSS)

The persistent (or stored) XSS vulnerability is a more
devastating variant of a cross-site scripting flaw: it occurs
when the data provided by the attacker is saved by the server,
and then permanently displayed on "normal" pages returned
to other users in the course of regular browsing, without
proper HTML escaping.

How to protect your web
application from clickjacking

What is Clickjacking?

Clickjacking is an exploit that fools a web site user to interact
with a site for the purposes of the attacker.

Typically, the attacker will:
 Have done extensive research on the particular web site to exploit
 Determine which functionality on the site to exploit (for example, a

person’s bank account), and include that content as an iFrame on
their web site
 Take advantage of the logged-in user to have them perform actions

on the web site to their benefit (examples of exploits involved
transferring money to the attacker’s account, to pad Facebook Likes
for an individual (among many others)

How to protect your web
application from clickjacking

How Do I Protect My App Against This?
Do not allow your web site to be included within an iFrame by an attacker.

X-WebKit-CSP

How to protect your web
application from clickjacking

What Are the Protections I can Add?
There are several things that you should include to provide the widest protection for
users of older to the most modern web browsers

1. Add the following CFHEADER tags to your Application.cfm or Application.cfc
<cfheader name=“Content-Security-Policy" value="frame-ancestors 'none'”>
<cfheader name=“X-Content-Security-Policy” value="frame-ancestors 'none'”>
<cfheader name=“ X-WebKit-CSP” value="frame-ancestors 'none’”>
- or –
<cfheader name=“Content-Security-Policy" value="frame-ancestors 'self'”>
<cfheader name=“X-Content-Security-Policy” value="frame-ancestors 'none'”>
<cfheader name=“ X-WebKit-CSP” value="frame-ancestors 'none’”>

more info: https://caniuse.com/#search=Content%20Security%20Policy%201.0

X-WebKit-CSP

https://caniuse.com/#search=Content%20Security%20Policy%201.0

How to protect your web
application from clickjacking

What Are the Protections I can Add?
2. Add the following CFHEADER tag to your Application.cfm or

Application.cfc
<cfheader name="X-Frame-Options" value=“DENY">
- or -
<cfheader name="X-Frame-Options" value=“SAMEORIGIN">

This option fills the gap for many other browsers (but not all) that do not
support the content-security-policy header

see: https://caniuse.com/#search=X-Frame-Options%20HTTP%20header

https://caniuse.com/#search=X-Frame-Options%20HTTP%20header

How to protect your web
application from clickjacking

What Are the Protections I can Add?
3. Add a “Best-for-now Legacy Browser Frame Breaking Script”

In the document HEAD element, add the following:
<style id="antiClickjack">body{display:none !important;}</style>

And then delete that style by its ID immediately after in the script:
<script type="text/javascript">

if (self === top) {
var antiClickjack = document.getElementById("antiClickjack");
antiClickjack.parentNode.removeChild(antiClickjack);

} else {

top.location = self.location;

}
</script>

How to protect your web
application from clickjacking

What Are the Protections I can Add?
4. If you would prefer, and you are using IIS, add the following code to your

web.config file under <configuration><system.webServer><httpProtocol>
<customHeaders>

<clear />
<add name="Content-Security-Policy" value="frame-ancestors 'self' X-Frame-Options:

SAMEORIGIN;upgrade-insecure-requests" />

<add name="X-Content-Security-Policy" value="frame-ancestors 'none'" />

<add name="X-WebKit-CSP" value="frame-ancestors 'none'" />

Download example web.config

https://www.seattlecfug.org/assets/presentations/samplewebconfig.zip

How to protect your web
application from clickjacking

Example

Clickjacking Allowed:
https://www.seattlecfug.org/presentations/clickjacking.cfm

Clickjacking Not Allowed:
https://www.seattlecfug.org/presentations/clickjackingDisallo
wed.cfm

https://www.seattlecfug.org/presentations/clickjacking.cfm
https://www.seattlecfug.org/presentations/clickjackingDisallowed.cfm

How to protect your web
application from clickjacking

References
1. OWASP Clickjacking Defense Cheat Sheet:

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

2. Can I Use? https://caniuse.com

3. Blackhat 2013 – Clickjacking Revisited - A Perceptual View of UI Security:
https://www.youtube.com/watch?v=KUoHW3Eq-n4

4. Burp Suite Professional (will allow you to navigate to a page and write the script to
test if a site is vulnerable to clickjacking) - https://portswigger.net

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://caniuse.com/
https://www.youtube.com/watch?v=KUoHW3Eq-n4
https://portswigger.net/

CF Alive

Book Recently Released by
Michaela Light

Next Steps for the Seattle
ColdFusion User Group

Does this venue work for you?
Do you prefer meeting in person or online?
What would you like our group to focus on?
What topics would you like to hear?

Next Month’s Meeting

December 5, 2018 – WeWork – Lincoln Square – Bellevue
Conference Room 5K

Questions/Answers/Help!

	November 2018
	Agenda
	Introductions
	Goals
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from SQL Injection Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from XSS Attacks
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	How to protect your web application from clickjacking
	CF Alive
	Next Steps for the Seattle ColdFusion User Group
	Next Month’s Meeting
	Questions/Answers/Help!

